Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Bolster Impacts to the Knee and Tibia of Human Cadavers and an Anthropomorphic Dummy

1978-02-01
780896
Knee bolsters on the lower instrument panel have been designed to control occupant kinematics during sudden deceleration. However, a wide variability in car occupant anthropometry and choice of seating posture indicates that lower-extremity contacts with the impingement bolster could predominantly load the flexed leg through the knee (acting through the femur) or through the tibia (acting through the knee joint). Potential injuries associated with these types of primary loading may vary significantly and an understanding of potential trauma mechanisms is important for proper occupant restraint.
Technical Paper

Considerations for a Femur Injury Criterion

1977-02-01
770925
A femur fracture injury criterion is presented that assesses the dependence of the permissible human knee load on the duration of the primary force exposure. Currently a constant allowable femur load limit of 7.6 kN (1700 lb) is specified in FMVSS 208, but recently the Federal Government proposed elevating the allowable limit to 10.0 kN (2250 lb), which is in excess of the limited experimental average static femur fracture force of 8.90 kN (2000 lb). A general analysis of all of the available biomechanics data and mathematical models on femoral impact response and fracture indicates a significant load time dependence for primary pulse durations below 20 ms that can elevate the permissible femur load above the Federally proposed allowable limit of 10.0 kN (2250 lb).
Technical Paper

Comparative Thoracic Impact Response of Living and Sacrificed Porcine Siblings

1977-02-01
770930
Thoracic impact response and injuries of living and postmortem porcine siblings were investigated to quantify comparative differences. Thirteen male animals, averaging 61.4 kg, from five different porcine litters comprised the two animal samples. Porcine brothers were subjected to similar impact exposures for which at least one brother was tested live, anesthetized and another dead, post rigor with vascular repressurization. Statistically significant differences in biomechanical responses and injuries were observed between live and postmortem siblings. On the average the anesthetized live animals demonstrated a greater thoracic compliance, as measured by increased normalized total deflections (21% Hi), and reduced overall injuries (AIS 14% Lo and rib fractures 26% Lo) at lower peak force levels (13% Lo) than did the postmortem subjects. However, individual comparisons of “match-tested” siblings demonstrated very similar responses in some cases.
Technical Paper

Thoracic Impact Response of Live Porcine Subjects

1976-02-01
760823
Five anesthetized porcine subjects were exposed to blunt thoracic impact using a 21 kg mass with a flat contact surface traveling at 3.0 to 12.2 m/s. The experiments were conducted to assess the appropriateness of studying in vivo mechanical and physiological response to thoracic impact in a porcine animal model. A comprehensive review of comparative anatomy between the pig and man indicates that the cardiovascular, respiratory and thoracic skeletal systems of the pig are anatomically and functionally a good parallel of similar structures in man. Thoracic anthropometry measurements document that the chest of a 50 to 60 kg pig is similar to the 50th percentile adult male human, but is narrower and deeper. Peak applied force and chest deflection are in good agreement between the animal's responses and similar impact severity data on fresh cadavers.
Technical Paper

Thoracic Impact: New Experimental Approaches Leading to Model Synthesis

1973-02-01
730981
The following work was done in support of a continuing program to better characterize the behavior of the human chest during blunt sternal impact. Previous work on this problem has focused on determining the force-time, deflection-time, and force-deflection response of embalmed and fresh cadavers to impact by a 15 cm (6 in) diameter striker of variable mass traveling at velocities of 22.5-51 km/h (14-32 mph) and striking the sternum at the level of the fourth intercostal space. Additional questions persist concerning whether the anterior and posterior regions of the chest behave as highly damped masses or oscillate after impact, the relationship between force delivered to the surface of the body and the acceleration of the underlying regions, and the influence of air compressed in the lung on thoracic mechanics.
X